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Abstract
Applying the spectral element method (SEM) based on the Gauss–Lobatto–
Legendre (GLL) polynomial to discretize Maxwell’s equations, we obtain a
Poisson system or a Poisson system with at most a perturbation. For the
system, we prove that any symplectic partitioned Runge–Kutta (PRK) method
preserves the Poisson structure and its implied symplectic structure. Numerical
examples show the high accuracy of SEM and the benefit of conserving energy
due to the use of symplectic methods.

PACS numbers: 02.60.Lj, 03.50.De

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Electromagnetic fields have been among the most focused research objects since the age
when the classic theory was built, due to their extremely diverse applications in engineering,
communication and many other research fields. Maxwell’s equations are the fundamental
laws describing the motions and behaviors of classic electromagnetic fields, and the starting
point for many deliberate and elegant research works. As time-domain simulations were
introduced for the analysis of transient electromagnetic fields and sensing systems, numerical
solutions of time-domain Maxwell’s equations have been more and more common. The
finite difference time-domain method (FDTDM) [1] is the original numerical method for
Maxwell’s equations and turns out to be the most popular tool. Then, various time-domain
finite element methods (TDFEM) [2]–[11], including the time-domain spectral element method
(SEM) based on Gauss–Lobatto–Legendre (GLL) polynomials [9]–[11], are developed to solve
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Maxwell’s equations because of their geometric flexibility. The time-domain GLL-SEM has
the advantages of high accuracy and geometric flexibility. On account of the orthogonality
of the basis functions, a diagonal or a block-diagonal mass matrix can be obtained by using
the GLL quadrature with little cost. In section 2, our spatial discretization for Maxwell’s
equations by using the GLL-SEM yields a system of ordinary differential equations, which is
a Poisson system or a Poisson system with a perturbation.

Maxwell’s equations can be written as an infinite-dimensional Hamiltonian system [12].
Thus, the solution can be recognized as a Hamiltonian flow in a functional space, which
preserves the symplectic structure in temporal direction. Symplectic methods [13]–[19]
preserve exactly the inherent canonical properties of the continuous Hamiltonian flow. The
most popular processes to deal with an infinite-dimensional Hamiltonian system are first
dimension reducing which aims to reach a finite-dimensional Hamiltonian system [16], and
then symplectic methods constructing. For Maxwell’s equations, we want to get a finite-
dimensional Hamiltonian system by using SEM, however there exists an inevitable difficulty
owing to the non-consistency between the numbers of edges and faces arising from discretizing
electric and magnetic fields, respectively. In fact, the obtained ODEs can be cast into a general
Poisson system or a Poisson system with a perturbation rather than a desired finite-dimensional
Hamiltonian system. Fortunately, the symplectic partitioned Runge–Kutta (PRK) methods
will be proved to preserve exactly the Poisson structure and the implied symplectic structure
in section 3. And, our numerical experiments will show the superiorities of this kind of
symplectic methods over the non-symplectic ones in the sense of conservation of invariants,
especially for longtime simulations, and also, the high efficiency and the spectral accuracy of
SEM in section 4.

2. Maxwell’s equations and spatial discretization

If the medium is isotropic and linear, then Maxwell’s equations are written as⎧⎪⎪⎨
⎪⎪⎩

ε
∂E
∂t

= ∇ × H − Js

μ
∂H
∂t

= −∇ × E,

(1)

where ε and μ are the permittivity and the permeability of the medium respectively (they are
assumed to be constant for each medium in this paper), E is the electric field intensity, H is
the magnetic field intensity, and Js is the vector electric current density function. If there are
only finite kinds of media in the spatial domain �, then (1) can be rewritten as a Hamiltonian
system ⎧⎪⎪⎨

⎪⎪⎩
∂E
∂t

= 1

ε
∇ × H − 1

ε
Js = δH

δH
∂H
∂t

= − 1

μ
∇ × E = −δH

δE

(2)

with Hamiltonian functional

H[E, H] =
∫

�

[
1

2μ
E · (∇ × E) +

1

2ε
H · (∇ × H) − 1

ε
H · Js

]
d�.

The Hilbert spaces H0(curl,�) and H0(div,�) are defined as

H0(curl,�) = {u ∈ (L2(�))3; ∇ × u ∈ (L2(�))3, n × u |∂�= 0},
H0(div,�) = {u ∈ (L2(�))3; ∇ · u ∈ L2(�), n · u |∂�= 0}.
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Let � ⊂ R
3 be a convex polygonal domain, and 〈U, V〉 = ∫

�
U · V d� for any vectors

U, V ∈ R
3. Then the weak form of system (2) is to find E ∈ H0(curl,�), H ∈ H0(div,�) for

all of E∗ ∈ H0(curl,�), H∗ ∈ H0(div,�) such that⎧⎪⎪⎨
⎪⎪⎩

∂

∂t
〈εE, E∗〉 = 〈∇ × H − Js , E∗〉

∂

∂t
〈μH, H∗〉 = −〈∇ × E, H∗〉.

(3)

We define the spaces of vector basis functions for electric field E and magnetic field H on
a physical element K, respectively:

Uh = span
{
Φ1, . . . ,ΦNe

}
, Vh = span

{
Ψ1, . . . ,ΨNh

}
,

where Ne and Nh are the numbers of unknowns for the electric and magnetic fields, respectively.
The discrete problem for (3) is to find Eh ∈ Uh, Hh ∈ Vh, for all of Φi ∈ Uh and Ψj ∈ Vh,

such that ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂

∂t

∑
K∈�h

〈εEh,Φi〉K =
∑
K∈�h

〈∇ × Hh − Js ,Φi〉K
∂

∂t

∑
K∈�h

〈μHh,Ψj 〉K = −
∑
K∈�h

〈∇ × Eh,Ψj 〉K,

(4)

where �̄ = ⋃
K∈�h

is a decomposition of �̄ and {�h} is a regular subdivision sequence of �.
Eh and Hh can be expressed by the basis functions on K:

Eh(X, t) =
Ne∑
i=1

e
(K)
i (t)Φi (X), Hh(X, t) =

Nh∑
j=1

h
(K)
j (t)Ψj (X). (5)

Substituting (5) into (4), we gain the matrix form of (4):⎧⎪⎪⎨
⎪⎪⎩

A
de(t)

dt
= Sh(t) − f (t)

B
dh(t)

dt
= −ST e(t),

(6)

where A,B, S, f, e, h consist of their corresponding elemental matrices or vectors
A(K), B(K), S(K), f (K), e(K), h(K) respectively, as follows:

(f (K))i =
∫

�

JT
s Φi dx dy dz; (A(K))ij = ε

∫
�

ΦT
i Φj dx dy dz;

(B(K))ij = μ

∫
�

ΨT
i Ψj dx dy dz; (S(K))ij =

∫
�

ΦT
i (∇ × Ψj ) dx dy dz.

When Js = 0, (6) yields a Poisson system⎧⎪⎪⎨
⎪⎪⎩

A
de(t)

dt
= Sh(t) = S∇hĤ (e, h)

B
dh(t)

dt
= −ST e(t) = −ST ∇eĤ (e, h),

(7)

where Ĥ (e, h) = 1
2 (|e|2 + |h|2). If Js �= 0, then (6) turns to be a Poisson system with some

perturbation.
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3. Symplectic discretization for the Poisson system

Equations (7) is a particular case of the following Poisson system

dZ

dt
= B(Z)∇H(Z), Z = [q1, . . . , qm1;p1, . . . , pm2 ]	 ∈ R

m, (8)

where m1 + m2 = m,B(Z) = [Om1 M

−M	 Om2

]
,Omi

∈ R
mi×mi is a null matrix (i = 1, 2),

M ∈ R
m1×m2 ,∇ stands for the gradient operator, and H : R

m1+m2 → R
1 is a smooth function

(Hamiltonian function).
Let rank(M) = r � min{m1,m2}. Without loss of generality, the (r × r)-sub-matrix on

the top-left corner of M is assumed to be non-degenerate. In this context, one can write

M =
[
K

CK

]
=

[
K̂ K̂Ĉ

CK̂ CK̂Ĉ

]
= [

V, V Ĉ
]
, (9)

where K ∈ R
r×m2 , C ∈ R

(m1−r)×r , K̂ ∈ R
r×r is non-degenerate, Ĉ ∈ R

r×(m2−r), and
V ∈ R

m1×r .
Later, we prove that the Poisson system (8) implies a symplectic structure.
Let q = [q1, . . . , qr ; qr+1, . . . , qm1 ]	 = [q̄	, q̂	]	, p = [p1, . . . , pr;pr+1, . . . , pm2 ]	 =

[p̄	, p̂	]	, q̄, p̄ ∈ R
r , q̂ ∈ R

m1−r , p̂ ∈ R
m2−r . According to (9), system (8) can be rewritten

as
dq̄

dt
= K∇pH (q, p) ,

dp̄

dt
= −V 	∇qH (q, p) ,

dq̂

dt
= CK∇pH (q, p) ,

dp̂

dt
= −Ĉ	V 	∇qH (q, p) .

(10)

Given initial conditions: q(0) = q0 = [
q̄	

0 , q̂	
0

]	
, p(0) = p0 = [

p̄	
0 , p̂	

0

]	
, (10) brings in

q̂ = Cq̄ + (q̂0 − Cq̄0) and p̂ = Ĉ	p̄ + (p̂0 − Ĉ	p̄0). Let

H̄ (q̄, p̄) = H (q, p) |q̂=Cq̄+(q̂0−Cq̄0), p̂=Ĉ	p̄+(p̂0−Ĉ	p̄0)

= H(q̄, Cq̄ + (q̂0 − Cq̄0) ; p̄, Ĉ	p̄ + (p̂0 − Ĉ	p̄0)),

then

∇q̄ H̄ = ∇q̄H + C	∇q̂H, ∇p̄H̄ = ∇p̄H + Ĉ∇p̂H. (11)

According to (9), (11), the first two equations in (10) can be rewritten as

dq̄

dt
= K̂∇p̄H̄ (q̄, p̄) ,

dp̄

dt
= −K̂	∇q̄ H̄ (q̄, p̄) .

Thus, we have the following theorem.

Theorem 1. System (8) can be divided into two parts: one is a Hamiltonian system equivalent
to ⎧⎪⎪⎨

⎪⎪⎩
dq̄

dt
= K̂∇p̄H̄ (q̄, p̄)

dp̄

dt
= −K̂	∇q̄ H̄ (q̄, p̄)

(12)

with symplectic structure dp̄ ∧̇ K̂−1 dq̄, the other is a simple algebraic system{
q̂ = Cq̄ + (q̂0 − Cq̄0)

p̂ = Ĉ	p̄ + (p̂0 − Ĉ	p̄0).
(13)

4
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Table 1. Table of Butcher for the PRK method.

c1 a11 . . . a1s c̄1 ā11 · · · ā1s

...
...

. . .
...

...
...

. . .
...

cs as1 . . . ass c̄s ās1 · · · āss

b1 . . . bs b̄1 · · · b̄s

In order to preserve its symplectic structure and the total energy of the system, the
symplectic method is the best choice to solve (12). As is well known, the phase flow of any
Poisson system is a one-parameter group of Poisson transformations, therefore the structure-
preserving algorithms (Poisson schemes) are desirable to be employed to solve this kind of
systems. It has been shown that any symplectic implicit diagonal Runge–Kutta method is a
Poisson scheme [15]. We will show that actually, for the linear Poisson system (8) (i.e., B(z)

is a constant matrix), any symplectic partitioned Runge–Kutta method preserves the Poisson
structure and the implied symplectic structure.

Recall that an s-order PRK method given in table 1 is usually used to solve the ordinary
differential equations⎧⎪⎨

⎪⎩
dq

dt
= f (q, p)

dp

dt
= g(q, p).

(14)

The result is ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qi = q0 + h

s∑
j=0

aijf (Qj , Pj )

Pi = p0 + h

s∑
j=0

āij g(Qj , Pj )

q1 = q0 + h

s∑
j=0

bjf (Qj , Pj )

p1 = p0 + h

s∑
j=0

b̄j g(Qj , Pj ).

The symplectic condition of this PRK method is [14]{
bi āij + b̄j aji − bi b̄j = 0, 1 � i � s

bi = b̄i , 1 � i � s.
(15)

If (12) is a separable system, then the symplectic condition will be reduced to the first formula
of (15) only.

Next we introduce a definition and some theorems to analyze the numerical solutions of
(8).

Definition 1. The variables q̄, p̄ in the Hamiltonian system (12) are called the symplectic
components of q and p, respectively; and the variables q̂, p̂ in the algebraic system (13) are
called their non-symplectic components.

5
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Theorem 2. Let u denote the numerical solution of the PRK method for (8), then the symplectic
components of u are numerical solutions of the PRK method for (12) and the non-symplectic
components of u are numerical solutions of the PRK method for (13).

Proof. Let (q0, p0), (q1, p1), . . . , (qN , pN) be the numerical solution of sth order PRK method
according to table 1 for (8), then⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qn
i = qn + h

s∑
j=1

aijM∇pH
(
Qn

j , P
n
j

)

P n
i = pn − h

s∑
j=1

āijM
T ∇qH

(
Qn

j , P
n
j

)

qn+1 = qn + h

s∑
j=1

bjM∇pH
(
Qn

j , P
n
j

)

pn+1 = pn − h

s∑
j=1

b̄jM
T ∇qH

(
Qn

j , P
n
j

)

,
i = 1, 2, . . . , s,

n = 0, 1, . . . , N − 1.
(16)

Considering M = [ K̂ K̂Ĉ

CK̂ CK̂Ĉ

]
, fromqn+1 = qn + h

∑s
j=1 bjM∇pH

(
Qn

j , P
n
j

)
, we obtain

q̂n+1 = Cq̄n+1 + (q̂n − Cq̄n), n = 0, 1, . . . , N − 1. (17)

Recursively, we have

q̂n = Cq̄n + (q̂0 − Cq̄0), n = 1, 2, . . . , N. (18)

For i = 1, 2, . . . , s; n = 0, 1, . . . , N − 1, we obtain

Q̂n
i − q̂n = C

(
Q̄n

i − q̄n

)
. (19)

Based on (18), we have

Q̂n
i = CQ̄n

i + (q̂0 − Cq̄0). (20)

By using (20) and the definition of H̄ (q̄, p̄), we obtain

H̄
(
Q̄n

j , P̄
n
j

) = H
(
Qn

j , P
n
j

)∣∣
Q̂n

j =CQ̄n
j +(q̂0−Cq̄0),P̂

n
j =CP̄ n

j +(p̂0−ĈT p̄0)
,

then, we derive the following scheme⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q̄n
i = q̄n + h

s∑
j=1

aij K̂∇p̄H̄
(
Q̄n

j , P̄
n
j

)

P̄ n
i = p̄n − h

s∑
j=1

āij K̂
T ∇q̄ H̄

(
Q̄n

j , P̄
n
j

)

q̄n+1 = q̄n + h

s∑
j=1

bj K̂∇p̄H̄
(
Q̄n

j , P̄
n
j

)

p̄n+1 = p̄n − h

s∑
j=1

b̄j K̂
T ∇q̄ H̄

(
Q̄n

j , P̄
n
j

)
q̂n+1 = Cq̄n+1 + (q̂0 − Cq̄0)

p̂n+1 = ĈT p̄n+1 + (p̂0 − ĈT p̄0).

(21)

Equation (21) can be divided into two parts, one is the PRK discretization of (12), and the

6



J. Phys. A: Math. Theor. 42 (2009) 325203 Y Zhao et al

other is {
q̂n = Cq̄n + (q̂0 − Cq̄0)

p̂n = ĈT p̄n + (p̂0 − ĈT p̄0).
(22)

Obviously, (22) is the PRK discretization form of (13). �

Let L = [ Or K̂

−K̂T Or

]−1
(Or ∈ R

r×r is a null matrix), we have the following theorem:

Theorem 3. Any symplectic PRK method is an L-symplectic scheme for the Hamiltonian
system (12), and corresponds to a Poisson integrator for the Poisson system (8).

4. Numerical results

From Maxwell’s equations (1) to Poisson system (7), the spatial discretization is implemented
by using the spectral elements based on GLL polynomials.

In the 1D case, on reference element [−1, 1], N th GLL basis functions are defined as

φj (ξ) = − 1

N(N + 1)LN(ξj )

(1 − ξ 2)L′
N(ξ)

ξ − ξj

, j = 0, 1, . . . N, (23)

where LN(ξ) is Nth Legendre polynomial and ξj (0 � j � N) are the zero points of
(1 − ξ 2)L′

N(ξ). Thus, for any polynomial P(x) with degree not higher than 2N − 1, we have∫ 1
−1 P(ξ)dξ = ∑N

k=0 ωkP (ξk), where ωk = 2
N(N+1)[LN (ξk)]2 .

In the 3D case, on the reference element [−1, 1] × [−1, 1] × [−1, 1], the basis functions
Φi = Φrst ∈ Uh can be chosen as

Φξ
rst (ξ, η, ζ ) = ξ̂φ

(Nξ −1)
r (ξ)φ

(Nη)
s (η)φ

(Nζ )
t (ζ );

Φη
rst (ξ, η, ζ ) = η̂φ

(Nξ )
r (ξ)φ

(Nη−1)
s (η)φ

(Nζ )
t (ζ );

Φζ
rst (ξ, η, ζ ) = ζ̂ φ

(Nξ )
r (ξ)φ

(Nη)
s (η)φ

(Nζ −1)
t (ζ );

and the basis functions Ψi = Ψrst ∈ Vh can be chosen as

Ψξ
rst (ξ, η, ζ ) = ξ̂φ

(Nξ )
r (ξ)φ

(Nη−1)
s (η)φ

(Nζ −1)
t (ζ );

Ψη
rst (ξ, η, ζ ) = η̂φ

(Nξ −1)
r (ξ)φ

(Nη)
s (η)φ

(Nζ −1)
t (ζ );

Ψζ
rst (ξ, η, ζ ) = ζ̂ φ

(Nξ −1)
r (ξ)φ

(Nη−1)
s (η)φ

(Nζ )
t (ζ ),

where Nξ,Nη Nζ are the degrees of GLL basis functions in terms of ξ , η and ζ , respectively.
We choose the above mixed-order curl conforming vector basis functions to guarantee

Gauss’s law at discrete level [20] and the tangential continuity across the element edges as
well as the element surfaces.

Making the best use of the properties of the basis functions for spectral elements [11],
one obtains a diagonal mass matrix. For example,

B
(1)
ij =

∫ 1

−1

∫ 1

−1

∫ 1

−1
φ

(Nξ −1)
r (ξ)φ

(Nη)
s (η)φ

(Nζ )
t (ζ )

× φ
(Nξ −1)

r ′ (ξ)φ
(Nη)

s ′ (η)φ
(Nζ )

t ′ (ζ ) dξ dη dζ

=
Nξ∑

m=0

Nη+1∑
n=0

Nζ +1∑
p=0

ω
(Nξ )
m ω

(Nη+1)
n ω

(Nζ +1)
p

× φ
(Nξ −1)
r (ξm)φ

(Nξ −1)

r ′ (ξm)φ
(Nη)
s (ηn)φ

(Nη)

s ′ (ηn)φ
(Nζ )
t (ζp)φ

(Nζ )

t ′ (ζp)

7
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Figure 1. Errors of electric field at 102.125 T obtained by using full and diagonal mass matrices
(left); errors of magnetic field at 102.125 T obtained by using full and diagonal mass matrices
(right).

Table 2. Table of Butcher for the fourth-order symplectic PRK method.

γ1
2

γ1
2 0 0 0 0 0 0 0 0

1
2

γ1
2

γ1+γ2
2 0 0 γ1 γ1 0 0 0

3γ1+2γ2
2

γ1
2

γ1+γ2
2

γ1+γ2
2 0 γ1 + γ2 γ1 γ2 0 0

1 γ1
2

γ1
2

γ1+γ2
2

γ1
2 1 γ1 γ2 γ1 0

γ1
2

γ1
2

γ1
2

γ1
2 γ1 γ2 γ1 0

Table 3. Table of Butcher for the fourth-order non-symplectic RK method.

0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0
1 0 0 1 0

1
6

1
3

1
3

1
6

≈
Nξ −1∑
m=0

Nη∑
n=0

Nζ∑
p=0

ω
(Nξ −1)
m ω

(Nη)
n ω

(Nζ )
p

× φ
(Nξ −1)
r (ξm)φ

(Nξ −1)

r ′ (ξm)φ
(Nη)
s (ηn)φ

(Nη)

s ′ (ηn)φ
(Nζ )
t (ζp)φ

(Nζ )

t ′ (ζp)

= δrr ′δss ′δtt ′ω
(Nξ −1)
r ω

(Nη)
s ω

(Nζ )
t .

Exact integration of B
(1)
ij produces a full mass matrix, whereas the above approximations lead

to a diagonal mass matrix which requires much less cost. In the numerical experiments, we
will show the errors between the electromagnetic fields obtained by using the full and the
diagonal mass matrices.

For 1D and 2D cases, based on the GLL-spectral-element spatial discretization, we will
compare the numerical results obtained by using the fourth-order explicit symplectic PRK
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Figure 2. Errors of electric field at 2.125 T obtained by using symplectic and non-symplectic
methods (left); errors of magnetic field at 2.125 T obtained by using symplectic and non-symplectic
methods (right).
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Figure 3. Errors of relative energy obtained by using symplectic and non-symplectic methods.
The abscissa means that the time for termination of simulation is (100 m + 2.125) T.

method (in table 2 where γ1 = 1
2− 3√2

and γ2 = 1
1− 3√4

) and fourth-order non-symplectic RK
method (in table 3) in temporal discretization.

First, we consider a plane wave equation:

⎧⎪⎪⎨
⎪⎪⎩

∂E
∂t

= −c0
∂H
∂x

∂H
∂t

= −c0
∂E
∂x

,

(24)
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Figure 4. Domain subdivision.
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Figure 5. Errors of electric field obtained by using full and diagonal mass matrixes (left); Errors
of electric field at 10T obtained by using symplectic PRK and non-symplectic RK methods (right).
The elements are the four subdomains and the orders of GLL basis functions satisfy Nξ = Nη = N .

where c0 is the speed of light in the vacuum. The domain is [0, 0.08] and the boundary condition
is E = 0. The wavelength and the period T are equal to 0.16 ns, 0.53 ns, respectively.

As shown in figure 1, the errors of the electric (magnetic) field obtained by using full and
diagonal mass matrices are very close; and in figure 2, the errors of the electric (magnetic)
field obtained by using symplectic and non-symplectic methods are almost the same; in
figure 3 however, the superiority of the symplectic method over non-symplectic one in
preserving the energy is evident.

Next, we consider the 2D vector wave equation with the boundary condition E × n = 0
on � = ∂�:

ε
∂2

∂t2
E(r, t) +

1

μ
curl(curl E(r, t)) = 0

in a rectangular cavity with dimension 1m × 0.5m as illustrated in figure 4. There are four
kinds of media in the domain, their relative permittivities are 8, 4, 2, 1 in subdomains I, II, III,
IV, respectively. The period is T = 3.671 ns and the wave number is k0 = 5.7095 m−1. As
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Figure 6. Errors of relative energy obtained by using symplectic PRK and non-symplectic RK
methods with temporal step size 0.02 ns.

shown in figures 5 and 6, similar to the 1D case, the errors of electric field obtained by using
full and diagonal mass matrices are very close; and the errors of the electric (magnetic) field
obtained by using symplectic and non-symplectic methods are almost same, by the way, the
spectral accuracy is influenced on account of the nonorthogonal mesh; the superiority of the
symplectic method over non-symplectic one in preserving the energy is evident.

In the figures above, N, nel and prt stand for the order of the GLL basis function, the
number of the elements and the temporal step size parameter, respectively.

5. Conclusions

A GLL-polynomial based SEM has been used to discretize the time-domain Maxwell’s
equations in spatial direction together with proper symplectic integration in temporal direction.
Due to the property of GLL basis functions and symplectic methods, the proposed scheme
provides high-order accuracy with little cost and preserves the structure of the obtained Poisson
system. The numerical experiments have demonstrated the advantages of the SEM and the
superiority of the symplectic methods over the non-symplectic ones in preserving the energies.
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